Bibliografía


  • Artigue, M. & Houdement, C. (2007). Problem solving in France: didactic and curricular perspectives. ZDM Int J Math Educ 39(5–6), pp 365–382
  • Cai J, Nie B (2007). Problem solving in Chinese mathematics education: research and practice. ZDM Int J Math Educ 39(5–6), pp 459–473
  • Clements, H. D., & Sarama, J. (2004). Learning trajectories in mathematics education. Mathematical Thinking and Learning, 6(2), 81–89
  • Halmos, P. R. (1994). What is teaching. Am Math Mon 101(9), pp 848–854
  • Hoyles, C. & Lagrange, J. (eds) (2010) Mathematics education and technology –rethinking the terrain. The 17th ICMI study.
  •  Springer, New York Kieran, C. (1992). The learning and teaching of school algebra. In: Grouws DA (ed) Handbook of research on mathematics teaching and learning. Macmillan, New York, pp 390–419
  • Kline, M. (1973). Why Johnny can’t add: the failure of the new math.
  • St. Martin’s Press, New York Krutestkii, V. A. (1976). The psychology of mathematical abilities in school children.
  • University of Chicago Press, Chicago Lesh, R. & Zawojewski, J. S. (2007). Problem solving and modeling.
  • In: Lester, F. K. Jr. (ed.) The second handbook of research on mathematics teaching and learning.
  • National Council of Teachers of Mathematics/Information Age Publishing, Charlotte, (763–804)
  • Lester F, Garofalo, J. (1982) Mathematical problem solving.
  • The Franklin Institute Press, Philadelphia NCTM (2000). Principles and standards for school mathematics. National Council of Teachers of Mathematics, Reston Presmeg, N. (2006). 
  • Semiotics and the “connections” standard: significance of semiotics for teachers of mathematics. Educ. Stud. Math. 61, pp 163–182 Polya, G. (1945).
  • How to solve it. Princeton University Press, Princeton Santos-Trigo, M. (2007).
  • Mathematical problem solving: an evolving research and practice domain. ZDM Int. J. Math. Educ. 39(5, 6), pp 523–536 Santos-Trigo, M. y Moreno-Armella, L. (2013).
  • Sobre la construcción de un marco conceptual en la resolución de problemas que incorpore el uso de herramientas computacionales. En Rojano, M.T. (Coordinación).
  • Las tecnologías digitales en la enseñanza de las matemáticas. Trillas Santos Trigo, L. M. (2014).
  • Resolución de problemas matemáticos: Fundamentos cognitivos. Trillas, México DF Selden, J., Selden, A. y Mason, A. (1994).
  • Even good calculus students can’t solve non-routine problems. En J. Kaput y E. Dubinsky (Eds.),
  • Research issues in undergraduate mathematics learning: Preliminary analyses and results (pp. 19-26).
  • Washington, DC: The Mathematical Association of America. Schoenfeld, A. (1985).
  • Mathematical Problem Solving. Academic, New York Simon, M. (1995).
  • Reconstructing mathematics pedagogy from a constructivist perspective.
  • Journal for Research in Mathematics Education, 26, 114–145 Van Hiele, P. M. (1986).
  • Structure and insight: a theory of mathematics education. Academic, New York
  • www.fciencias.unam.mx/posgrado/ProgEspecializaciones/ArchivosPDF/Especializacion_Matematicas.pdf
  • www.posgrado.unam.mx/madems/portada/plan.pdf, pp 50-72